Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

LeanConvNets: Low-cost Yet Effective Convolutional Neural Networks (1910.13157v2)

Published 29 Oct 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Convolutional Neural Networks (CNNs) have become indispensable for solving machine learning tasks in speech recognition, computer vision, and other areas that involve high-dimensional data. A CNN filters the input feature using a network containing spatial convolution operators with compactly supported stencils. In practice, the input data and the hidden features consist of a large number of channels, which in most CNNs are fully coupled by the convolution operators. This coupling leads to immense computational cost in the training and prediction phase. In this paper, we introduce LeanConvNets that are derived by sparsifying fully-coupled operators in existing CNNs. Our goal is to improve the efficiency of CNNs by reducing the number of weights, floating point operations and latency times, with minimal loss of accuracy. Our lean convolution operators involve tuning parameters that controls the trade-off between the network's accuracy and computational costs. These convolutions can be used in a wide range of existing networks, and we exemplify their use in residual networks (ResNets). Using a range of benchmark problems from image classification and semantic segmentation, we demonstrate that the resulting LeanConvNet's accuracy is close to state-of-the-art networks while being computationally less expensive. In our tests, the lean versions of ResNet in most cases outperform comparable reduced architectures such as MobileNets and ShuffleNets.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.