Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High order approximation of Hodge Laplace problems with local coderivatives on cubical meshes (1910.13059v1)

Published 29 Oct 2019 in math.NA and cs.NA

Abstract: In mixed finite element approximations of Hodge Laplace problems associated with the de Rham complex, the exterior derivative operators are computed exactly, so the spatial locality is preserved. However, the numerical approximations of the associated coderivatives are nonlocal and it can be regarded as an undesired effect of standard mixed methods. For numerical methods with local coderivatives a perturbation of low order mixed methods in the sense of variational crimes has been developed for simplicial and cubical meshes. In this paper we extend the low order method to all high orders on cubical meshes using a new family of finite element differential forms on cubical meshes. The key theoretical contribution is a generalization of the linear degree, in the construction of the serendipity family of differential forms, and the generalization is essential in the unisolvency proof of the new family of finite element differential forms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jeonghun J. Lee (28 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.