Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

High order approximation of Hodge Laplace problems with local coderivatives on cubical meshes (1910.13059v1)

Published 29 Oct 2019 in math.NA and cs.NA

Abstract: In mixed finite element approximations of Hodge Laplace problems associated with the de Rham complex, the exterior derivative operators are computed exactly, so the spatial locality is preserved. However, the numerical approximations of the associated coderivatives are nonlocal and it can be regarded as an undesired effect of standard mixed methods. For numerical methods with local coderivatives a perturbation of low order mixed methods in the sense of variational crimes has been developed for simplicial and cubical meshes. In this paper we extend the low order method to all high orders on cubical meshes using a new family of finite element differential forms on cubical meshes. The key theoretical contribution is a generalization of the linear degree, in the construction of the serendipity family of differential forms, and the generalization is essential in the unisolvency proof of the new family of finite element differential forms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.