Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Model selection for deep audio source separation via clustering analysis (1910.12626v2)

Published 23 Oct 2019 in eess.AS, cs.LG, cs.SD, and stat.ML

Abstract: Audio source separation is the process of separating a mixture (e.g. a pop band recording) into isolated sounds from individual sources (e.g. just the lead vocals). Deep learning models are the state-of-the-art in source separation, given that the mixture to be separated is similar to the mixtures the deep model was trained on. This requires the end user to know enough about each model's training to select the correct model for a given audio mixture. In this work, we automate selection of the appropriate model for an audio mixture. We present a confidence measure that does not require ground truth to estimate separation quality, given a deep model and audio mixture. We use this confidence measure to automatically select the model output with the best predicted separation quality. We compare our confidence-based ensemble approach to using individual models with no selection, to an oracle that always selects the best model and to a random model selector. Results show our confidence-based ensemble significantly outperforms the random ensemble over general mixtures and approaches oracle performance for music mixtures.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.