Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Degree of Boolean Functions as Polynomials over $\mathbb{Z}_m$ (1910.12458v3)

Published 28 Oct 2019 in cs.CC

Abstract: Polynomial representations of Boolean functions over various rings such as $\mathbb{Z}$ and $\mathbb{Z}_m$ have been studied since Minsky and Papert (1969). From then on, they have been employed in a large variety of fields including communication complexity, circuit complexity, learning theory, coding theory and so on. For any integer $m\ge2$, each Boolean function has a unique multilinear polynomial representation over ring $\mathbb Z_m$. The degree of such polynomial is called modulo-$m$ degree, denoted as $\mathrm{deg}_m(\cdot)$. In this paper, we investigate the lower bound of modulo-$m$ degree of Boolean functions. When $m=pk$ ($k\ge 1$) for some prime $p$, we give a tight lower bound that $\mathrm{deg}_m(f)\geq k(p-1)$ for any non-degenerated function $f:{0,1}n\to{0,1}$, provided that $n$ is sufficient large. When $m$ contains two different prime factors $p$ and $q$, we give a nearly optimal lower bound for any symmetric function $f:{0,1}n\to{0,1}$ that $\mathrm{deg}_m(f) \geq \frac{n}{2+\frac{1}{p-1}+\frac{1}{q-1}}$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.