Unsupervised pre-training for sequence to sequence speech recognition (1910.12418v2)
Abstract: This paper proposes a novel approach to pre-train encoder-decoder sequence-to-sequence (seq2seq) model with unpaired speech and transcripts respectively. Our pre-training method is divided into two stages, named acoustic pre-trianing and linguistic pre-training. In the acoustic pre-training stage, we use a large amount of speech to pre-train the encoder by predicting masked speech feature chunks with its context. In the linguistic pre-training stage, we generate synthesized speech from a large number of transcripts using a single-speaker text to speech (TTS) system, and use the synthesized paired data to pre-train decoder. This two-stage pre-training method integrates rich acoustic and linguistic knowledge into seq2seq model, which will benefit downstream automatic speech recognition (ASR) tasks. The unsupervised pre-training is finished on AISHELL-2 dataset and we apply the pre-trained model to multiple paired data ratios of AISHELL-1 and HKUST. We obtain relative character error rate reduction (CERR) from 38.24% to 7.88% on AISHELL-1 and from 12.00% to 1.20% on HKUST. Besides, we apply our pretrained model to a cross-lingual case with CALLHOME dataset. For all six languages in CALLHOME dataset, our pre-training method makes model outperform baseline consistently.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.