Papers
Topics
Authors
Recent
2000 character limit reached

What does BERT Learn from Multiple-Choice Reading Comprehension Datasets? (1910.12391v1)

Published 28 Oct 2019 in cs.CL

Abstract: Multiple-Choice Reading Comprehension (MCRC) requires the model to read the passage and question, and select the correct answer among the given options. Recent state-of-the-art models have achieved impressive performance on multiple MCRC datasets. However, such performance may not reflect the model's true ability of language understanding and reasoning. In this work, we adopt two approaches to investigate what BERT learns from MCRC datasets: 1) an un-readable data attack, in which we add keywords to confuse BERT, leading to a significant performance drop; and 2) an un-answerable data training, in which we train BERT on partial or shuffled input. Under un-answerable data training, BERT achieves unexpectedly high performance. Based on our experiments on the 5 key MCRC datasets - RACE, MCTest, MCScript, MCScript2.0, DREAM - we observe that 1) fine-tuned BERT mainly learns how keywords lead to correct prediction, instead of learning semantic understanding and reasoning; and 2) BERT does not need correct syntactic information to solve the task; 3) there exists artifacts in these datasets such that they can be solved even without the full context.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.