Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Variable Selection with Copula Entropy (1910.12389v2)

Published 28 Oct 2019 in cs.LG, stat.ME, and stat.ML

Abstract: Variable selection is of significant importance for classification and regression tasks in machine learning and statistical applications where both predictability and explainability are needed. In this paper, a Copula Entropy (CE) based method for variable selection which use CE based ranks to select variables is proposed. The method is both model-free and tuning-free. Comparison experiments between the proposed method and traditional variable selection methods, such as Distance Correlation, Hilbert-Schmidt Independence Criterion, Stepwise Selection, regularized generalized linear models and Adaptive LASSO, were conducted on the UCI heart disease data. Experimental results show that CE based method can select the `right' variables out more effectively and derive better interpretable results than traditional methods do without sacrificing accuracy performance. It is believed that CE based variable selection can help to build more explainable models.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)