A simple measure of conditional dependence (1910.12327v6)
Abstract: We propose a coefficient of conditional dependence between two random variables $Y$ and $Z$ given a set of other variables $X_1,\ldots,X_p$, based on an i.i.d. sample. The coefficient has a long list of desirable properties, the most important of which is that under absolutely no distributional assumptions, it converges to a limit in $[0,1]$, where the limit is $0$ if and only if $Y$ and $Z$ are conditionally independent given $X_1,\ldots,X_p$, and is $1$ if and only if $Y$ is equal to a measurable function of $Z$ given $X_1,\ldots,X_p$. Moreover, it has a natural interpretation as a nonlinear generalization of the familiar partial $R2$ statistic for measuring conditional dependence by regression. Using this statistic, we devise a new variable selection algorithm, called Feature Ordering by Conditional Independence (FOCI), which is model-free, has no tuning parameters, and is provably consistent under sparsity assumptions. A number of applications to synthetic and real datasets are worked out.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.