Papers
Topics
Authors
Recent
2000 character limit reached

EdgeFool: An Adversarial Image Enhancement Filter (1910.12227v2)

Published 27 Oct 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Adversarial examples are intentionally perturbed images that mislead classifiers. These images can, however, be easily detected using denoising algorithms, when high-frequency spatial perturbations are used, or can be noticed by humans, when perturbations are large. In this paper, we propose EdgeFool, an adversarial image enhancement filter that learns structure-aware adversarial perturbations. EdgeFool generates adversarial images with perturbations that enhance image details via training a fully convolutional neural network end-to-end with a multi-task loss function. This loss function accounts for both image detail enhancement and class misleading objectives. We evaluate EdgeFool on three classifiers (ResNet-50, ResNet-18 and AlexNet) using two datasets (ImageNet and Private-Places365) and compare it with six adversarial methods (DeepFool, SparseFool, Carlini-Wagner, SemanticAdv, Non-targeted and Private Fast Gradient Sign Methods). Code is available at https://github.com/smartcameras/EdgeFool.git.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.