Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Extracting Highlights From Recorded Live Videos: An Implicit Crowdsourcing Approach (1910.12201v1)

Published 27 Oct 2019 in cs.DB

Abstract: Live streaming platforms need to store a lot of recorded live videos on a daily basis. An important problem is how to automatically extract highlights (i.e., attractive short video clips) from these massive, long recorded live videos. One approach is to directly apply a highlight extraction algorithm to video content. However, algorithmic approaches are either domain-specific, which require experts to spend a long time to design, or resource-intensive, which require a lot of training data and/or computing resources. In this paper, we propose Lightor, a novel implicit crowdsourcing approach to overcome these limitations. The key insight is to collect users' natural interactions with a live streaming platform, and then leverage them to detect highlights. Lightor consists of two major components. Highlight Initializer collects time-stamped chat messages from a live video and then uses them to predict approximate highlight positions. Highlight Extractor keeps track of how users interact with these approximate highlight positions and then refines these positions iteratively. We find that the collected user chat and interaction data are very noisy, and propose effective techniques to deal with noise. Lightor can be easily deployed into existing live streaming platforms, or be implemented as a web browser extension. We recruit hundreds of users from Amazon Mechanical Turk, and evaluate the performance of Lightor using two popular games in Twitch. The results show that Lightor can achieve high extraction precision with a small set of training data and low computing resources.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.