Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 352 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Federated Uncertainty-Aware Learning for Distributed Hospital EHR Data (1910.12191v1)

Published 27 Oct 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Recent works have shown that applying Machine Learning to Electronic Health Records (EHR) can strongly accelerate precision medicine. This requires developing models based on diverse EHR sources. Federated Learning (FL) has enabled predictive modeling using distributed training which lifted the need of sharing data and compromising privacy. Since models are distributed in FL, it is attractive to devise ensembles of Deep Neural Networks that also assess model uncertainty. We propose a new FL model called Federated Uncertainty-Aware Learning Algorithm (FUALA) that improves on Federated Averaging (FedAvg) in the context of EHR. FUALA embeds uncertainty information in two ways: It reduces the contribution of models with high uncertainty in the aggregated model. It also introduces model ensembling at prediction time by keeping the last layers of each hospital from the final round. In FUALA, the Federator (central node) sends at each round the average model to all hospitals as well as a randomly assigned hospital model update to estimate its generalization on that hospital own data. Each hospital sends back its model update as well a generalization estimation of the assigned model. At prediction time, the model outputs C predictions for each sample where C is the number of hospital models. The experimental analysis conducted on a cohort of 87K deliveries for the task of preterm-birth prediction showed that the proposed approach outperforms FedAvg when evaluated on out-of-distribution data. We illustrated how uncertainty could be measured using the proposed approach.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube