Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bayesian Graph Convolutional Neural Networks Using Non-Parametric Graph Learning (1910.12132v1)

Published 26 Oct 2019 in cs.LG and stat.ML

Abstract: Graph convolutional neural networks (GCNN) have been successfully applied to many different graph based learning tasks including node and graph classification, matrix completion, and learning of node embeddings. Despite their impressive performance, the techniques have a limited capability to incorporate the uncertainty in the underlined graph structure. In order to address this issue, a Bayesian GCNN (BGCN) framework was recently proposed. In this framework, the observed graph is considered to be a random realization from a parametric random graph model and the joint Bayesian inference of the graph and GCNN weights is performed. In this paper, we propose a non-parametric generative model for graphs and incorporate it within the BGCN framework. In addition to the observed graph, our approach effectively uses the node features and training labels in the posterior inference of graphs and attains superior or comparable performance in benchmark node classification tasks.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube