Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Classical Hardness of Spoofing Linear Cross-Entropy Benchmarking (1910.12085v5)

Published 26 Oct 2019 in quant-ph and cs.CC

Abstract: Recently, Google announced the first demonstration of quantum computational supremacy with a programmable superconducting processor. Their demonstration is based on collecting samples from the output distribution of a noisy random quantum circuit, then applying a statistical test to those samples called Linear Cross-Entropy Benchmarking (Linear XEB). This raises a theoretical question: how hard is it for a classical computer to spoof the results of the Linear XEB test? In this short note, we adapt an analysis of Aaronson and Chen [2017] to prove a conditional hardness result for Linear XEB spoofing. Specifically, we show that the problem is classically hard, assuming that there is no efficient classical algorithm that, given a random n-qubit quantum circuit C, estimates the probability of C outputting a specific output string, say 0n, with variance even slightly better than that of the trivial estimator that always estimates 1/2n. Our result automatically encompasses the case of noisy circuits.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.