Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Disinformation Detection: A review of linguistic feature selection and classification models in news veracity assessments (1910.12073v1)

Published 26 Oct 2019 in cs.CL, cs.CY, and cs.LG

Abstract: Over the past couple of years, the topic of "fake news" and its influence over people's opinions has become a growing cause for concern. Although the spread of disinformation on the Internet is not a new phenomenon, the widespread use of social media has exacerbated its effects, providing more channels for dissemination and the potential to "go viral." Nowhere was this more evident than during the 2016 United States Presidential Election. Although the current of disinformation spread via trolls, bots, and hyperpartisan media outlets likely reinforced existing biases rather than sway undecided voters, the effects of this deluge of disinformation are by no means trivial. The consequences range in severity from an overall distrust in news media, to an ill-informed citizenry, and in extreme cases, provocation of violent action. It is clear that human ability to discern lies from truth is flawed at best. As such, greater attention has been given towards applying machine learning approaches to detect deliberately deceptive news articles. This paper looks at the work that has already been done in this area.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)