Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Toward a better trade-off between performance and fairness with kernel-based distribution matching (1910.11779v1)

Published 25 Oct 2019 in cs.LG and stat.ML

Abstract: As recent literature has demonstrated how classifiers often carry unintended biases toward some subgroups, deploying machine learned models to users demands careful consideration of the social consequences. How should we address this problem in a real-world system? How should we balance core performance and fairness metrics? In this paper, we introduce a MinDiff framework for regularizing classifiers toward different fairness metrics and analyze a technique with kernel-based statistical dependency tests. We run a thorough study on an academic dataset to compare the Pareto frontier achieved by different regularization approaches, and apply our kernel-based method to two large-scale industrial systems demonstrating real-world improvements.

Citations (44)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.