Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Channel adversarial training for speaker verification and diarization (1910.11643v1)

Published 25 Oct 2019 in cs.SD, cs.LG, and eess.AS

Abstract: Previous work has encouraged domain-invariance in deep speaker embedding by adversarially classifying the dataset or labelled environment to which the generated features belong. We propose a training strategy which aims to produce features that are invariant at the granularity of the recording or channel, a finer grained objective than dataset- or environment-invariance. By training an adversary to predict whether pairs of same-speaker embeddings belong to the same recording in a Siamese fashion, learned features are discouraged from utilizing channel information that may be speaker discriminative during training. Experiments for verification on VoxCeleb and diarization and verification on CALLHOME show promising improvements over a strong baseline in addition to outperforming a dataset-adversarial model. The VoxCeleb model in particular performs well, achieving a $4\%$ relative improvement in EER over a Kaldi baseline, while using a similar architecture and less training data.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.