Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Multi-Phase Gammatone Filterbank for Speech Separation via TasNet (1910.11615v2)

Published 25 Oct 2019 in eess.AS, cs.LG, and cs.SD

Abstract: In this work, we investigate if the learned encoder of the end-to-end convolutional time domain audio separation network (Conv-TasNet) is the key to its recent success, or if the encoder can just as well be replaced by a deterministic hand-crafted filterbank. Motivated by the resemblance of the trained encoder of Conv-TasNet to auditory filterbanks, we propose to employ a deterministic gammatone filterbank. In contrast to a common gammatone filterbank, our filters are restricted to 2 ms length to allow for low-latency processing. Inspired by the encoder learned by Conv-TasNet, in addition to the logarithmically spaced filters, the proposed filterbank holds multiple gammatone filters at the same center frequency with varying phase shifts. We show that replacing the learned encoder with our proposed multi-phase gammatone filterbank (MP-GTF) even leads to a scale-invariant source-to-noise ratio (SI-SNR) improvement of 0.7 dB. Furthermore, in contrast to using the learned encoder we show that the number of filters can be reduced from 512 to 128 without loss of performance.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube