Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Distributed Privacy-Preserving Prediction (1910.11478v2)

Published 25 Oct 2019 in cs.CR

Abstract: In privacy-preserving machine learning, individual parties are reluctant to share their sensitive training data due to privacy concerns. Even the trained model parameters or prediction can pose serious privacy leakage. To address these problems, we demonstrate a generally applicable Distributed Privacy-Preserving Prediction (DPPP) framework, in which instead of sharing more sensitive data or model parameters, an untrusted aggregator combines only multiple models' predictions under provable privacy guarantee. Our framework integrates two main techniques to guarantee individual privacy. First, we introduce the improved Binomial Mechanism and Discrete Gaussian Mechanism to achieve distributed differential privacy. Second, we utilize homomorphic encryption to ensure that the aggregator learns nothing but the noisy aggregated prediction. Experimental results demonstrate that our framework has comparable performance to the non-private frameworks and delivers better results than the local differentially private framework and standalone framework.

Citations (4)

Summary

We haven't generated a summary for this paper yet.