Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Recognizing long-form speech using streaming end-to-end models (1910.11455v1)

Published 24 Oct 2019 in eess.AS, cs.CL, and cs.SD

Abstract: All-neural end-to-end (E2E) automatic speech recognition (ASR) systems that use a single neural network to transduce audio to word sequences have been shown to achieve state-of-the-art results on several tasks. In this work, we examine the ability of E2E models to generalize to unseen domains, where we find that models trained on short utterances fail to generalize to long-form speech. We propose two complementary solutions to address this: training on diverse acoustic data, and LSTM state manipulation to simulate long-form audio when training using short utterances. On a synthesized long-form test set, adding data diversity improves word error rate (WER) by 90% relative, while simulating long-form training improves it by 67% relative, though the combination doesn't improve over data diversity alone. On a real long-form call-center test set, adding data diversity improves WER by 40% relative. Simulating long-form training on top of data diversity improves performance by an additional 27% relative.

Citations (125)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.