Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Intensity-Based Feature Selection for Near Real-Time Damage Diagnosis of Building Structures (1910.11240v1)

Published 23 Oct 2019 in eess.SP, cs.LG, and stat.ML

Abstract: Near real-time damage diagnosis of building structures after extreme events (e.g., earthquakes) is of great importance in structural health monitoring. Unlike conventional methods that are usually time-consuming and require human expertise, pattern recognition algorithms have the potential to interpret sensor recordings as soon as this information is available. This paper proposes a robust framework to build a damage prediction model for building structures. Support vector machines are used to predict the existence as well as the probable location of the damage. The model is designed to consider probabilistic approaches in determining hazard intensity given the existing attenuation models in performance-based earthquake engineering. Performance of the model regarding accurate and safe predictions is enhanced using Bayesian optimization. The proposed framework is evaluated on a reinforced concrete moment frame. Targeting a selected large earthquake scenario, 6,240 nonlinear time history analyses are performed using OpenSees. Simulation results are engineered to extract low-dimensional intensity-based features that can be used as damage indicators. For the given case study, the proposed model achieves a promising accuracy of 83.1% to identify damage location, demonstrating the great potential of model capabilities.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube