Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ERM and RERM are optimal estimators for regression problems when malicious outliers corrupt the labels (1910.10923v2)

Published 24 Oct 2019 in math.ST, stat.ML, and stat.TH

Abstract: We study Empirical Risk Minimizers (ERM) and Regularized Empirical Risk Minimizers (RERM) for regression problems with convex and $L$-Lipschitz loss functions. We consider a setting where $|\cO|$ malicious outliers contaminate the labels. In that case, under a local Bernstein condition, we show that the $L_2$-error rate is bounded by $ r_N + AL |\cO|/N$, where $N$ is the total number of observations, $r_N$ is the $L_2$-error rate in the non-contaminated setting and $A$ is a parameter coming from the local Bernstein condition. When $r_N$ is minimax-rate-optimal in a non-contaminated setting, the rate $r_N + AL|\cO|/N$ is also minimax-rate-optimal when $|\cO|$ outliers contaminate the label. The main results of the paper can be used for many non-regularized and regularized procedures under weak assumptions on the noise. We present results for Huber's M-estimators (without penalization or regularized by the $\ell_1$-norm) and for general regularized learning problems in reproducible kernel Hilbert spaces when the noise can be heavy-tailed.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)