Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Selective Attention Based Graph Convolutional Networks for Aspect-Level Sentiment Classification (1910.10857v4)

Published 24 Oct 2019 in cs.CL and cs.LG

Abstract: Aspect-level sentiment classification aims to identify the sentiment polarity towards a specific aspect term in a sentence. Most current approaches mainly consider the semantic information by utilizing attention mechanisms to capture the interactions between the context and the aspect term. In this paper, we propose to employ graph convolutional networks (GCNs) on the dependency tree to learn syntax-aware representations of aspect terms. GCNs often show the best performance with two layers, and deeper GCNs do not bring additional gain due to over-smoothing problem. However, in some cases, important context words cannot be reached within two hops on the dependency tree. Therefore we design a selective attention based GCN block (SA-GCN) to find the most important context words, and directly aggregate these information into the aspect-term representation. We conduct experiments on the SemEval 2014 Task 4 datasets. Our experimental results show that our model outperforms the current state-of-the-art.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube