Papers
Topics
Authors
Recent
2000 character limit reached

Relation Module for Non-answerable Prediction on Question Answering (1910.10843v1)

Published 23 Oct 2019 in cs.CL, cs.AI, and cs.LG

Abstract: Machine reading comprehension(MRC) has attracted significant amounts of research attention recently, due to an increase of challenging reading comprehension datasets. In this paper, we aim to improve a MRC model's ability to determine whether a question has an answer in a given context (e.g. the recently proposed SQuAD 2.0 task). Our solution is a relation module that is adaptable to any MRC model. The relation module consists of both semantic extraction and relational information. We first extract high level semantics as objects from both question and context with multi-head self-attentive pooling. These semantic objects are then passed to a relation network, which generates relationship scores for each object pair in a sentence. These scores are used to determine whether a question is non-answerable. We test the relation module on the SQuAD 2.0 dataset using both BiDAF and BERT models as baseline readers. We obtain 1.8% gain of F1 on top of the BiDAF reader, and 1.0% on top of the BERT base model. These results show the effectiveness of our relation module on MRC

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.