Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sidebar: Scratchpad Based Communication Between CPUs and Accelerators (1910.10794v1)

Published 23 Oct 2019 in cs.AR

Abstract: Hardware accelerators for neural networks have shown great promise for both performance and power. These accelerators are at their most efficient when optimized for a fixed functionality. But this inflexibility limits the longevity of the hardware itself as the underlying neural network algorithms and structures undergo improvements and changes. We propose and evaluate a flexible design paradigm for accelerators with a close coordination with host processors. The relatively static matrix operations are implemented in specialized accelerators while fast-evolving functions, such as activations, are computed on the host processor. This architecture is enabled by a low latency shared buffer we call Sidebar. Sidebar memory is shared between the accelerator and host, exists outside of program address space and holds intermediate data only. We show that a generalised DMA dependent flexible accelerator design performs poorly in both perf and energy as compared to an equivalent fixed function accelerator. Sidebar based accelerator design achieves near identical performance and energy to equivalent fixed function accelerator while still providing all the flexibility of computing activations on the host processor.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube