Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Speaker Adaptive Training using Model Agnostic Meta-Learning (1910.10605v1)

Published 23 Oct 2019 in cs.CL, cs.LG, and eess.AS

Abstract: Speaker adaptive training (SAT) of neural network acoustic models learns models in a way that makes them more suitable for adaptation to test conditions. Conventionally, model-based speaker adaptive training is performed by having a set of speaker dependent parameters that are jointly optimised with speaker independent parameters in order to remove speaker variation. However, this does not scale well if all neural network weights are to be adapted to the speaker. In this paper we formulate speaker adaptive training as a meta-learning task, in which an adaptation process using gradient descent is encoded directly into the training of the model. We compare our approach with test-only adaptation of a standard baseline model and a SAT-LHUC model with a learned speaker adaptation schedule and demonstrate that the meta-learning approach achieves comparable results.

Citations (29)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.