Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning (1910.10453v7)

Published 23 Oct 2019 in cs.LG, cs.DC, cs.IT, cs.NI, math.IT, and stat.ML

Abstract: In this article, we propose a communication-efficient decentralized ML algorithm, coined quantized group ADMM (Q-GADMM). To reduce the number of communication links, every worker in Q-GADMM communicates only with two neighbors, while updating its model via the group alternating direction method of multipliers (GADMM). Moreover, each worker transmits the quantized difference between its current model and its previously quantized model, thereby decreasing the communication payload size. However, due to the lack of centralized entity in decentralized ML, the spatial sparsity and payload compression may incur error propagation, hindering model training convergence. To overcome this, we develop a novel stochastic quantization method to adaptively adjust model quantization levels and their probabilities, while proving the convergence of Q-GADMM for convex objective functions. Furthermore, to demonstrate the feasibility of Q-GADMM for non-convex and stochastic problems, we propose quantized stochastic GADMM (Q-SGADMM) that incorporates deep neural network architectures and stochastic sampling. Simulation results corroborate that Q-GADMM significantly outperforms GADMM in terms of communication efficiency while achieving the same accuracy and convergence speed for a linear regression task. Similarly, for an image classification task using DNN, Q-SGADMM achieves significantly less total communication cost with identical accuracy and convergence speed compared to its counterpart without quantization, i.e., stochastic GADMM (SGADMM).

Citations (52)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.