Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Retrieve and Refine: Exemplar-based Neural Comment Generation (1910.10419v1)

Published 23 Oct 2019 in cs.SE

Abstract: Code comment generation is a crucial task in the field of automatic software development. Most previous neural comment generation systems used an encoder-decoder neural network and encoded only information from source code as input. Software reuse is common in software development. However, this feature has not been introduced to existing systems. Inspired by the traditional IR-based approaches, we propose to use the existing comments of similar source code as exemplars to guide the comment generation process. Based on an open source search engine, we first retrieve a similar code and treat its comment as an exemplar. Then we applied a seq2seq neural network to conduct an exemplar-based comment generation. We evaluate our approach on a large-scale Java corpus, and experimental results demonstrate that our model significantly outperforms the state-of-the-art methods.

Citations (109)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)