Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

BanditRank: Learning to Rank Using Contextual Bandits (1910.10410v1)

Published 23 Oct 2019 in cs.IR and cs.LG

Abstract: We propose an extensible deep learning method that uses reinforcement learning to train neural networks for offline ranking in information retrieval (IR). We call our method BanditRank as it treats ranking as a contextual bandit problem. In the domain of learning to rank for IR, current deep learning models are trained on objective functions different from the measures they are evaluated on. Since most evaluation measures are discrete quantities, they cannot be leveraged by directly using gradient descent algorithms without an approximation. BanditRank bridges this gap by directly optimizing a task-specific measure, such as mean average precision (MAP), using gradient descent. Specifically, a contextual bandit whose action is to rank input documents is trained using a policy gradient algorithm to directly maximize the reward. The reward can be a single measure, such as MAP, or a combination of several measures. The notion of ranking is also inherent in BanditRank, similar to the current \textit{listwise} approaches. To evaluate the effectiveness of BanditRank, we conducted a series of experiments on datasets related to three different tasks, i.e., web search, community, and factoid question answering. We found that it performs better than state-of-the-art methods when applied on the question answering datasets. On the web search dataset, we found that BanditRank performed better than four strong listwise baselines including LambdaMART, AdaRank, ListNet and Coordinate Ascent.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.