Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging directed causal discovery to detect latent common causes (1910.10174v3)

Published 22 Oct 2019 in stat.ML and cs.LG

Abstract: The discovery of causal relationships is a fundamental problem in science and medicine. In recent years, many elegant approaches to discovering causal relationships between two variables from observational data have been proposed. However, most of these deal only with purely directed causal relationships and cannot detect latent common causes. Here, we devise a general heuristic which takes a causal discovery algorithm that can only distinguish purely directed causal relations and modifies it to also detect latent common causes. We apply our method to two directed causal discovery algorithms, the Information Geometric Causal Inference of (Daniusis et al., 2010) and the Kernel Conditional Deviance for Causal Inference of (Mitrovic, Sejdinovic, & Teh, 2018), and extensively test on synthetic data -- detecting latent common causes in additive, multiplicative and complex noise regimes -- and on real data, where we are able to detect known common causes. In addition to detecting latent common causes, our experiments demonstrate that both the modified algorithms preserve the performance of the original in distinguishing directed causal relations.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.