Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving singing voice separation with the Wave-U-Net using Minimum Hyperspherical Energy (1910.10071v1)

Published 22 Oct 2019 in cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: In recent years, deep learning has surpassed traditional approaches to the problem of singing voice separation. The Wave-U-Net is a recent deep network architecture that operates directly on the time domain. The standard Wave-U-Net is trained with data augmentation and early stopping to prevent overfitting. Minimum hyperspherical energy (MHE) regularization has recently proven to increase generalization in image classification problems by encouraging a diversified filter configuration. In this work, we apply MHE regularization to the 1D filters of the Wave-U-Net. We evaluated this approach for separating the vocal part from mixed music audio recordings on the MUSDB18 dataset. We found that adding MHE regularization to the loss function consistently improves singing voice separation, as measured in the Signal to Distortion Ratio on test recordings, leading to the current best time-domain system for singing voice extraction.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.