Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Node-Aware Improvements to Allreduce (1910.09650v1)

Published 21 Oct 2019 in cs.DC

Abstract: The \texttt{MPI_Allreduce} collective operation is a core kernel of many parallel codebases, particularly for reductions over a single value per process. The commonly used allreduce recursive-doubling algorithm obtains the lower bound message count, yielding optimality for small reduction sizes based on node-agnostic performance models. However, this algorithm yields duplicate messages between sets of nodes. Node-aware optimizations in MPICH remove duplicate messages through use of a single master process per node, yielding a large number of inactive processes at each inter-node step. In this paper, we present an algorithm that uses the multiple processes available per node to reduce the maximum number of inter-node messages communicated by a single process, improving the performance of allreduce operations, particularly for small message sizes.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.