Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Edge Dithering for Robust Adaptive Graph Convolutional Networks (1910.09590v1)

Published 21 Oct 2019 in cs.LG and stat.ML

Abstract: Graph convolutional networks (GCNs) are vulnerable to perturbations of the graph structure that are either random, or, adversarially designed. The perturbed links modify the graph neighborhoods, which critically affects the performance of GCNs in semi-supervised learning (SSL) tasks. Aiming at robustifying GCNs conditioned on the perturbed graph, the present paper generates multiple auxiliary graphs, each having its binary 0-1 edge weights flip values with probabilities designed to enhance robustness. The resultant edge-dithered auxiliary graphs are leveraged by an adaptive (A)GCN that performs SSL. Robustness is enabled through learnable graph-combining weights along with suitable regularizers. Relative to GCN, the novel AGCN achieves markedly improved performance in tests with noisy inputs, graph perturbations, and state-of-the-art adversarial attacks. Further experiments with protein interaction networks showcase the competitive performance of AGCN for SSL over multiple graphs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.