Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Supervised tensor decomposition with features on multiple modes (1910.09499v2)

Published 21 Oct 2019 in stat.ME, cs.LG, math.ST, stat.ML, and stat.TH

Abstract: Higher-order tensors have received increased attention across science and engineering. While most tensor decomposition methods are developed for a single tensor observation, scientific studies often collect side information, in the form of node features and interactions thereof, together with the tensor data. Such data problems are common in neuroimaging, network analysis, and spatial-temporal modeling. Identifying the relationship between a high-dimensional tensor and side information is important yet challenging. Here, we develop a tensor decomposition method that incorporates multiple feature matrices as side information. Unlike unsupervised tensor decomposition, our supervised decomposition captures the effective dimension reduction of the data tensor confined to feature space of interest. An efficient alternating optimization algorithm with provable spectral initialization is further developed. Our proposal handles a broad range of data types, including continuous, count, and binary observations. We apply the method to diffusion tensor imaging data from human connectome project and multi-relational political network data. We identify the key global connectivity pattern and pinpoint the local regions that are associated with available features. Our simulation code, R-package tensorregress, and datasets used in the paper are available at https://CRAN.R-project.org/package=tensorregress.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.