Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Relative Interior Rule in Block-Coordinate Minimization (1910.09488v1)

Published 21 Oct 2019 in math.OC and cs.CV

Abstract: (Block-)coordinate minimization is an iterative optimization method which in every iteration finds a global minimum of the objective over a variable or a subset of variables, while keeping the remaining variables constant. While for some problems, coordinate minimization converges to a global minimum (e.g., convex differentiable objective), for general (non-differentiable) convex problems this may not be the case. Despite this drawback, (block-)coordinate minimization can be an acceptable option for large-scale non-differentiable convex problems; an example is methods to solve the linear programming relaxation of the discrete energy minimization problem (MAP inference in graphical models). When block-coordinate minimization is applied to a general convex problem, in every iteration the minimizer over the current coordinate block need not be unique and therefore a single minimizer must be chosen. We propose that this minimizer be chosen from the relative interior of the set of all minimizers over the current block. We show that this rule is not worse, in a certain precise sense, than any other rule.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube