Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Sampling using an Accelerated Metropolis-Hastings based on Bayesian Optimization and Gaussian Processes (1910.09347v1)

Published 21 Oct 2019 in cs.LG and stat.ML

Abstract: Markov Chain Monte Carlo (MCMC) methods have a drawback when working with a target distribution or likelihood function that is computationally expensive to evaluate, specially when working with big data. This paper focuses on Metropolis-Hastings (MH) algorithm for unimodal distributions. Here, an enhanced MH algorithm is proposed that requires less number of expensive function evaluations, has shorter burn-in period, and uses a better proposal distribution. The main innovations include the use of Bayesian optimization to reach the high probability region quickly, emulating the target distribution using Gaussian processes (GP), and using Laplace approximation of the GP to build a proposal distribution that captures the underlying correlation better. The experiments show significant improvement over the regular MH. Statistical comparison between the results from two algorithms is presented.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Asif J. Chowdhury (2 papers)
  2. Gabriel Terejanu (22 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.