Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximation capabilities of neural networks on unbounded domains (1910.09293v8)

Published 21 Oct 2019 in cs.LG and stat.ML

Abstract: In this paper, we prove that a shallow neural network with a monotone sigmoid, ReLU, ELU, Softplus, or LeakyReLU activation function can arbitrarily well approximate any Lp(p>=2) integrable functions defined on R*[0,1]n. We also prove that a shallow neural network with a sigmoid, ReLU, ELU, Softplus, or LeakyReLU activation function expresses no nonzero integrable function defined on the Euclidean plane. Together with a recent result that the deep ReLU network can arbitrarily well approximate any integrable function on Euclidean spaces, we provide a new perspective on the advantage of multiple hidden layers in the context of ReLU networks. Lastly, we prove that the ReLU network with depth 3 is a universal approximator in Lp(Rn).

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)