Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Good, Better, Best: Textual Distractors Generation for Multiple-Choice Visual Question Answering via Reinforcement Learning (1910.09134v3)

Published 21 Oct 2019 in cs.CV and cs.CL

Abstract: Multiple-choice VQA has drawn increasing attention from researchers and end-users recently. As the demand for automatically constructing large-scale multiple-choice VQA data grows, we introduce a novel task called textual Distractors Generation for VQA (DG-VQA) focusing on generating challenging yet meaningful distractors given the context image, question, and correct answer. The DG-VQA task aims at generating distractors without ground-truth training samples since such resources are rarely available. To tackle the DG-VQA unsupervisedly, we propose Gobbet, a reinforcement learning(RL) based framework that utilizes pre-trained VQA models as an alternative knowledge base to guide the distractor generation process. In Gobbet, a pre-trained VQA model serves as the environment in RL setting to provide feedback for the input multi-modal query, while a neural distractor generator serves as the agent to take actions accordingly. We propose to use existing VQA models' performance degradation as indicators of the quality of generated distractors. On the other hand, we show the utility of generated distractors through data augmentation experiments, since robustness is more and more important when AI models apply to unpredictable open-domain scenarios or security-sensitive applications. We further conduct a manual case study on the factors why distractors generated by Gobbet can fool existing models.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube