Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Adversarial Regression. Generative Adversarial Networks for Non-Linear Regression: Theory and Assessment (1910.09106v1)

Published 18 Oct 2019 in stat.ML and cs.LG

Abstract: Adversarial Regression is a proposition to perform high dimensional non-linear regression with uncertainty estimation. We used Conditional Generative Adversarial Network to obtain an estimate of the full predictive distribution for a new observation. Generative Adversarial Networks (GAN) are implicit generative models which produce samples from a distribution approximating the distribution of the data. The conditional version of it (CGAN) takes the following expression: $\min\limits_G \max\limits_D V(D, G) = \mathbb{E}{x\sim p{r}(x)} [log(D(x, y))] + \mathbb{E}{z\sim p{z}(z)} [log (1-D(G(z, y)))]$. An approximate solution can be found by training simultaneously two neural networks to model D and G and feeding G with a random noise vector $z$. After training, we have that $G(z, y)\mathrel{\dot\sim} p_{data}(x, y)$. By fixing $y$, we have $G(z|y) \mathrel{\dot\sim} p{data}(x|y)$. By sampling $z$, we can therefore obtain samples following approximately $p(x|y)$, which is the predictive distribution of $x$ for a new $y$. We ran experiments to test various loss functions, data distributions, sample size, size of the noise vector, etc. Even if we observed differences, no experiment outperformed consistently the others. The quality of CGAN for regression relies on fine-tuning a range of hyperparameters. In a broader view, the results show that CGANs are very promising methods to perform uncertainty estimation for high dimensional non-linear regression.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)