Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Decentralized Heterogeneous Multi-Player Multi-Armed Bandits with Non-Zero Rewards on Collisions (1910.09089v4)

Published 21 Oct 2019 in cs.LG, cs.GT, and stat.ML

Abstract: We consider a fully decentralized multi-player stochastic multi-armed bandit setting where the players cannot communicate with each other and can observe only their own actions and rewards. The environment may appear differently to different players, $\textit{i.e.}$, the reward distributions for a given arm are heterogeneous across players. In the case of a collision (when more than one player plays the same arm), we allow for the colliding players to receive non-zero rewards. The time-horizon $T$ for which the arms are played is \emph{not} known to the players. Within this setup, where the number of players is allowed to be greater than the number of arms, we present a policy that achieves near order-optimal expected regret of order $O(\log{1 + \delta} T)$ for some $0 < \delta < 1$ over a time-horizon of duration $T$. This paper is accepted at IEEE Transactions on Information Theory.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube