Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Improved error rates for sparse (group) learning with Lipschitz loss functions (1910.08880v7)

Published 20 Oct 2019 in stat.ML, cs.LG, and stat.OT

Abstract: We study a family of sparse estimators defined as minimizers of some empirical Lipschitz loss function -- which include the hinge loss, the logistic loss and the quantile regression loss -- with a convex, sparse or group-sparse regularization. In particular, we consider the L1 norm on the coefficients, its sorted Slope version, and the Group L1-L2 extension. We propose a new theoretical framework that uses common assumptions in the literature to simultaneously derive new high-dimensional L2 estimation upper bounds for all three regularization schemes. %, and to improve over existing results. For L1 and Slope regularizations, our bounds scale as $(k*/n) \log(p/k*)$ -- $n\times p$ is the size of the design matrix and $k*$ the dimension of the theoretical loss minimizer $\B{\beta}*$ -- and match the optimal minimax rate achieved for the least-squares case. For Group L1-L2 regularization, our bounds scale as $(s*/n) \log\left( G / s* \right) + m* / n$ -- $G$ is the total number of groups and $m*$ the number of coefficients in the $s*$ groups which contain $\B{\beta}*$ -- and improve over the least-squares case. We show that, when the signal is strongly group-sparse, Group L1-L2 is superior to L1 and Slope. In addition, we adapt our approach to the sub-Gaussian linear regression framework and reach the optimal minimax rate for Lasso, and an improved rate for Group-Lasso. Finally, we release an accelerated proximal algorithm that computes the nine main convex estimators of interest when the number of variables is of the order of $100,000s$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)