Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Eigenvalues and Spectral Dimension of Random Geometric Graphs in Thermodynamic Regime (1910.08869v1)

Published 20 Oct 2019 in math.SP, cs.DM, and math.PR

Abstract: Network geometries are typically characterized by having a finite spectral dimension (SD), $d_{s}$ that characterizes the return time distribution of a random walk on a graph. The main purpose of this work is to determine the SD of a variety of random graphs called random geometric graphs (RGGs) in the thermodynamic regime, in which the average vertex degree is constant. The spectral dimension depends on the eigenvalue density (ED) of the RGG normalized Laplacian in the neighborhood of the minimum eigenvalues. In fact, the behavior of the ED in such a neighborhood characterizes the random walk. Therefore, we first provide an analytical approximation for the eigenvalues of the regularized normalized Laplacian matrix of RGGs in the thermodynamic regime. Then, we show that the smallest non zero eigenvalue converges to zero in the large graph limit. Based on the analytical expression of the eigenvalues, we show that the eigenvalue distribution in a neighborhood of the minimum value follows a power-law tail. Using this result, we find that the SD of RGGs is approximated by the space dimension $d$ in the thermodynamic regime.

Citations (3)

Summary

We haven't generated a summary for this paper yet.