Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Reverse Experience Replay (1910.08780v2)

Published 19 Oct 2019 in cs.LG, cs.AI, and stat.ML

Abstract: This paper describes an improvement in Deep Q-learning called Reverse Experience Replay (also RER) that solves the problem of sparse rewards and helps to deal with reward maximizing tasks by sampling transitions successively in reverse order. On tasks with enough experience for training and enough Experience Replay memory capacity, Deep Q-learning Network with Reverse Experience Replay shows competitive results against both Double DQN, with a standard Experience Replay, and vanilla DQN. Also, RER achieves significantly increased results in tasks with a lack of experience and Replay memory capacity.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)