Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Improved Historical Embedding without Alignment (1910.08692v1)

Published 19 Oct 2019 in cs.CL and cs.IR

Abstract: Many words have evolved in meaning as a result of cultural and social change. Understanding such changes is crucial for modelling language and cultural evolution. Low-dimensional embedding methods have shown promise in detecting words' meaning change by encoding them into dense vectors. However, when exploring semantic change of words over time, these methods require the alignment of word embeddings across different time periods. This process is computationally expensive, prohibitively time consuming and suffering from contextual variability. In this paper, we propose a new and scalable method for encoding words from different time periods into one dense vector space. This can greatly improve performance when it comes to identifying words that have changed in meaning over time. We evaluated our method on dataset from Google Books N-gram. Our method outperformed three other popular methods in terms of the number of words correctly identified to have changed in meaning. Additionally, we provide an intuitive visualization of the semantic evolution of some words extracted by our method

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.