Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Masked Gradient-Based Causal Structure Learning (1910.08527v3)

Published 18 Oct 2019 in cs.LG, stat.ME, and stat.ML

Abstract: This paper studies the problem of learning causal structures from observational data. We reformulate the Structural Equation Model (SEM) with additive noises in a form parameterized by binary graph adjacency matrix and show that, if the original SEM is identifiable, then the binary adjacency matrix can be identified up to super-graphs of the true causal graph under mild conditions. We then utilize the reformulated SEM to develop a causal structure learning method that can be efficiently trained using gradient-based optimization, by leveraging a smooth characterization on acyclicity and the Gumbel-Softmax approach to approximate the binary adjacency matrix. It is found that the obtained entries are typically near zero or one and can be easily thresholded to identify the edges. We conduct experiments on synthetic and real datasets to validate the effectiveness of the proposed method, and show that it readily includes different smooth model functions and achieves a much improved performance on most datasets considered.

Citations (110)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.