Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Hierarchical Attentive Knowledge Graph Embedding for Personalized Recommendation (1910.08288v4)

Published 18 Oct 2019 in cs.IR and cs.LG

Abstract: Knowledge graphs (KGs) have proven to be effective for high-quality recommendation, where the connectivities between users and items provide rich and complementary information to user-item interactions. Most existing methods, however, are insufficient to exploit the KGs for capturing user preferences, as they either represent the user-item connectivities via paths with limited expressiveness or implicitly model them by propagating information over the entire KG with inevitable noise. In this paper, we design a novel hierarchical attentive knowledge graph embedding (HAKG) framework to exploit the KGs for effective recommendation. Specifically, HAKG first extracts the expressive subgraphs that link user-item pairs to characterize their connectivities, which accommodate both the semantics and topology of KGs. The subgraphs are then encoded via a hierarchical attentive subgraph encoding to generate effective subgraph embeddings for enhanced user preference prediction. Extensive experiments show the superiority of HAKG against state-of-the-art recommendation methods, as well as its potential in alleviating the data sparsity issue.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.