Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Learning to Answer Subjective, Specific Product-Related Queries using Customer Reviews by Adversarial Domain Adaptation (1910.08270v2)

Published 18 Oct 2019 in cs.CL, cs.IR, and cs.LG

Abstract: Online customer reviews on large-scale e-commerce websites, represent a rich and varied source of opinion data, often providing subjective qualitative assessments of product usage that can help potential customers to discover features that meet their personal needs and preferences. Thus they have the potential to automatically answer specific queries about products, and to address the problems of answer starvation and answer augmentation on associated consumer Q & A forums, by providing good answer alternatives. In this work, we explore several recently successful neural approaches to modeling sentence pairs, that could better learn the relationship between questions and ground truth answers, and thus help infer reviews that can best answer a question or augment a given answer. In particular, we hypothesize that our adversarial domain adaptation-based approach, due to its ability to additionally learn domain-invariant features from a large number of unlabeled, unpaired question-review samples, would perform better than our proposed baselines, at answering specific, subjective product-related queries using reviews. We validate this hypothesis using a small gold standard dataset of question-review pairs evaluated by human experts, significantly surpassing our chosen baselines. Moreover, our approach, using no labeled question-review sentence pair data for training, gives performance at par with another method utilizing labeled question-review samples for the same task.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.