Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Multi-scale and Context-adaptive Entropy Model for Image Compression (1910.07844v1)

Published 17 Oct 2019 in eess.IV

Abstract: We propose an end-to-end trainable image compression framework with a multi-scale and context-adaptive entropy model, especially for low bitrate compression. Due to the success of autoregressive priors in probabilistic generative model, the complementary combination of autoregressive and hierarchical priors can estimate the distribution of each latent representation accurately. Based on this combination, we firstly propose a multi-scale masked convolutional network as our autoregressive model. Secondly, for the significant computational penalty of generative model, we focus on decoded representations covered by receptive field, and skip full zero latents in arithmetic codec. At last, according to the low-rate compression's constraint in CLIC-2019, we use a method to maximize MS-SSIM by allocating bitrate for each image.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.