Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-scale and Context-adaptive Entropy Model for Image Compression (1910.07844v1)

Published 17 Oct 2019 in eess.IV

Abstract: We propose an end-to-end trainable image compression framework with a multi-scale and context-adaptive entropy model, especially for low bitrate compression. Due to the success of autoregressive priors in probabilistic generative model, the complementary combination of autoregressive and hierarchical priors can estimate the distribution of each latent representation accurately. Based on this combination, we firstly propose a multi-scale masked convolutional network as our autoregressive model. Secondly, for the significant computational penalty of generative model, we focus on decoded representations covered by receptive field, and skip full zero latents in arithmetic codec. At last, according to the low-rate compression's constraint in CLIC-2019, we use a method to maximize MS-SSIM by allocating bitrate for each image.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.