Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sharper bounds for uniformly stable algorithms (1910.07833v2)

Published 17 Oct 2019 in cs.LG, math.PR, and stat.ML

Abstract: Deriving generalization bounds for stable algorithms is a classical question in learning theory taking its roots in the early works by Vapnik and Chervonenkis (1974) and Rogers and Wagner (1978). In a series of recent breakthrough papers by Feldman and Vondrak (2018, 2019), it was shown that the best known high probability upper bounds for uniformly stable learning algorithms due to Bousquet and Elisseef (2002) are sub-optimal in some natural regimes. To do so, they proved two generalization bounds that significantly outperform the simple generalization bound of Bousquet and Elisseef (2002). Feldman and Vondrak also asked if it is possible to provide sharper bounds and prove corresponding high probability lower bounds. This paper is devoted to these questions: firstly, inspired by the original arguments of Feldman and Vondrak (2019), we provide a short proof of the moment bound that implies the generalization bound stronger than both recent results (Feldman and Vondrak, 2018, 2019). Secondly, we prove general lower bounds, showing that our moment bound is sharp (up to a logarithmic factor) unless some additional properties of the corresponding random variables are used. Our main probabilistic result is a general concentration inequality for weakly correlated random variables, which may be of independent interest.

Citations (114)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.