Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Information-theoretic metrics for Local Differential Privacy protocols (1910.07826v1)

Published 17 Oct 2019 in cs.CR, cs.IT, and math.IT

Abstract: Local Differential Privacy (LDP) protocols allow an aggregator to obtain population statistics about sensitive data of a userbase, while protecting the privacy of the individual users. To understand the tradeoff between aggregator utility and user privacy, we introduce new information-theoretic metrics for utility and privacy. Contrary to other LDP metrics, these metrics highlight the fact that the users and the aggregator are interested in fundamentally different domains of information. We show how our metrics relate to $\varepsilon$-LDP, the \emph{de facto} standard privacy metric, giving an information-theoretic interpretation to the latter. Furthermore, we use our metrics to quantitatively study the privacy-utility tradeoff for a number of popular protocols.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.