Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Distributed Bloom Filter (1910.07782v2)

Published 17 Oct 2019 in cs.DS and cs.DC

Abstract: The Distributed Bloom Filter is a space-efficient, probabilistic data structure designed to perform more efficient set reconciliations in distributed systems. It guarantees eventual consistency of states between nodes in a system, while still keeping bloom filter sizes as compact as possible. The eventuality can be tweaked as desired, by tweaking the distributed bloom filter's parameters. The scalability, as well as accuracy of the data structure is made possible by combining two novel ideas: The first idea introduces a new, computationally inexpensive way for populating bloom filters, making it possible to quickly compute new bloom filters when interacting with peers. The second idea introduces the concept of unique bloom filter mappings between peers. By applying these two simple ideas, one can achieve incredibly bandwidth-efficient set reconciliation in networks. Instead of trying to minimize the false positive rate of a single bloom filter, we use the unique bloom filter mappings to increase the probability for an element to propagate through a network. We compare the standard bloom filter with the distributed bloom filter and show that even with a false positive rate of 50%, i.e. even with a very small bloom filter size, the distributed bloom filter still manages to reach complete set reconciliation across the network in a highly space-efficient, as well as time-efficient way.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.